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Abstract
We develop a multiple interface variational model, comprising multiple Taylor-relaxed plasma regions separated
by ideal MHD barriers. The magnetic field in each region is Beltrami, ∇ × B = µB, and the pressure constant.
Between regions the pressure, field strength, and rotational transform may have step changes at the ideal barrier. A
principle motivation is the development of a mathematically rigorous ideal MHD model to describe intrinsically 3D
equilibria, with nonzero internal pressure, using robust KAM surfaces as the barriers. This article chiefly addresses
whether the stability of two interface configurations with continuous rotational transform, but vanishing interface
separation, is different from the stability of a single interface configuration with jump in the rotational transform.
To make the problem analytically tractable, we derive the equilibria and stability of a multi-interface plasma in a
periodic cylinder, generalizing the cylindrical treatment of Kaiser and Uecker (2004 Q. J. Mech. Appl. Math. 57
1–17). For two interfaces with no jump in rotational transform, we show that one eigenmode has in-phase interface
displacements, and an eigenvalue that converges to the single barrier case in the limit of vanishing interface width.
The complementary eigenmode is out-of-phase, and highly unstable. Physically, the unstable eigenmode is driven
by the parallel current, and caused by the high shear required to match the different rotational transform on each
interface. In the limit that the interface separation vanishes, the shear and parallel current density become infinite,
and the parallel current between the interfaces nonzero. Surfaces with out-of-phase displacements will then collide,
unless the amplitude goes to zero as the interface separation goes to zero. These results suggest the hypothesis
that KAM barriers with different irrational rotational transform on either side may be allowable without violating
nonlinear stability.

PACS numbers: 52.55.−s, 52.55.Hc, 52.65.Kj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In 1967, Grad [1] showed that in order for a static 3D
equilibrium to exist, the pressure gradient (∇p) must be zero in
the neighbourhood of every rational flux surface, and poloidal
flux ψp surfaces must be relinquished. Since this time, this
existence problem in 3D geometry has remained controversial.
Our working develops a mathematically rigorous model of 3D
ideal MHD configurations, in which the pressure is stepped,
and ∇p is zero locally in any finite volume.

The original motivation of the 3D equilibrium problem,
as proposed by Grad, was the search for a helical field in
cylindrical coordinates. Grad reduced the problem to the
magnetic differential equation B · ∇ζ = 1, with ζ a current
potential. Next, Grad [1, appendix A] proved that unless
a Author to whom any correspondence should be addressed.

stringent conditions are imposed on B, the potential ζ is a
non-integrable function due to resonances at rational values
of the rotational transform �ι (or safety factor q ≡ 1/�ι). If
ζ is non-integrable, then J and the total current are infinite,
and the solution unphysical. A more transparent illustration,
which elucidates the requirements on B and ∇p for arbitrary
3D configurations involves adding a helical field perturbation
δB to a 2D field B0 with perfect flux surfaces [2]. The
field must always satisfy J × B = ∇p, hence B0 · ∇p0 =
(B0 + δB) · ∇(p0 + δp) = 0. Here, J is the current density and
p0 and δp the unperturbed and perturbed pressures. To first
order, we require

δB · ∇p0 = −B0 · ∇δp. (1)

By employing magnetic coordinates (ψt , θm, φ) for B0, with
θm and φ magnetic poloidal and toroidal angles, and linearizing
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the perturbations

δp =
∑
m

∑
n

pmnei(nφ−mθm), (2)

δB · ∇ψt

B0 · ∇φ
=

∑
m

∑
n

bmnei(nφ−mθm), (3)

it can be shown that equation (1) reduces to

i(n − m�ι(ψt ))pmn = p′
0(ψt )bmn. (4)

Here, n and m are toroidal and poloidal mode numbers, and
pmn and bmn perturbed pressure and magnetic field Fourier
coefficients. For a given (m, n) perturbation within the range
�ιmin < n/m < �ιmax there will be a flux surface ψt resonant with
the perturbation (i.e. �ι(ψt ) = n/m). In general, a nonzero 3D
perturbation can exist only if p′

0(ψt ) = 0. As the rationals are
dense in the set of real numbers, the condition p′

0(ψt ) = 0 will
hence be dense over the set of real ψt [3]. The existence of 3D
equilibria can hence only be guaranteed providing ∇p0 = 0.

Ideal MHD configurations with ∇p = 0 are force-free
fields, with B satisfying ∇ × B = µB. If µ is constant, B is
a linear force-free field, or Beltrami field. Such fields were
first introduced in to the astrophysical literature over 50 years
ago by Lüst and Schlüter [4] and Chandrasekhar [5], amongst
others. The motivation for their work was the vanishing of the
Lorentz J × B force, enabling astrophysical stationary state
solutions. Woltjer [6] was the first to derive a Beltrami field by
trying to minimize the total energy of a pressureless plasma
subject to constant helicity. While successfully describing
the nature of stable solutions, Woltjer’s working did not
address how the plasma evolved to the lower energy state.
Nearly 20 years later, Taylor [7, 8] addressed this difficulty
by two conjectures initially developed to describe turbulent
relaxation in the reverse field pinch: magnetic helicity would
be roughly conserved during the relaxation process, even in the
presence of resistivity, and no other topological invariant would
survive the relaxation phase. Since these formative works, a
large body of literature has been devoted to force-free fields
and Taylor relaxation. In astrophysical plasmas, important
applications include coronal loops and accretion disks. In
laboratory plasmas, examples include reverse field pinches and
spheromaks. The geophysical monograph ‘Magnetic Helicity
in Space and Laboratory Plasmas’ [9] provides an overview,
and lists seminal references.

While Taylor’s theory is successful in explaining the
reversed field pinch, it needs to be extended in order to explain
tokamak and stellarators, which experiments show can have a
non-trivial pressure profile. To do this, we suggest a model
of multiple Taylor-relaxed regions, with ∇p = 0 in each
region. Each region is separated by an ideal MHD barrier,
where pressure jumps are allowed and so a non-trivial pressure
profile can be constructed. In the three dimensional case,
the ideal interfaces can be chosen to be the (nonresonant)
irrational KAM flux surfaces that survive the onset of field line
chaos intrinsic to 3D equilibria [10]. The boundary condition
across these interfaces is the continuity of the total pressure
[[p + B2/2]] = 0, so any pressure jump must be accompanied
by a jump in the field strength. In general, discontinuities in the

pressure, field strength, and rotational transform are allowed
across the ideal MHD barriers.

There are various questions that must be addressed
regarding such a model. For example, should the rotational-
transform be allowed to jump across the irrational KAM
ideal barrier? Assuming that one can construct a multiple-
ideal-interface, piecewise-Taylor relaxed equilibrium, is the
equilibrium stable to arbitrary deformation of the interfaces?
How much control does one have over the rotational transform
profile? To address these questions, without introducing the
additional complexity associated with the onset of chaotic
field lines, this paper presents such an equilibrium model (see
section 2) in cylindrical geometry. The simple geometry allows
the equilibrium to be solved analytically, and expressions for
the stability to be determined as an eigenvalue problem.

Our working builds principally upon a variational
model developed by Spies et al [11], which comprised a
plasma/vacuum/conducting wall system. In Spies the theory is
applied to a plasma slab equilibrium, with boundary conditions
designed to simulate a torus. Later analysis by Spies [12]
extended the plasma model to include finite pressure. In
2004, Kaiser and Uecker [13] analysed the finite pressure
model in cylindrical geometry. More recently, Hole et al
[14] extended the single interface cylindrical treatment of
Kaiser and Uecker to multiple interfaces, and demonstrated the
existence of partially relaxed Taylor plasmas with tokamak-
like magnetic shear profiles. In this work, we perform
a stability analysis on stepped pressure profile plasmas in
cylindrical geometry. Our working complements work by
Hudson et al [15], which developed a numerical algorithm for
the calculation of Beltrami fields between two interfaces in 3D
plasmas. Hudson et al section 3 also treat the equilibrium as
an eigenvalue problem, showing that for prescribed inner and
outer rotational transform, there is an infinity of eigenvalues
for µ. Increasing |µ| eigenvalues correspond to an increasing
number of field reversals (�ι = ∞) between the two interfaces,
while the sign of µ determines the sign of the magnetic shear.

This paper is arranged as follows: section 2 presents the
variational model for the stepped pressure profile equilibria.
Equations for equilibrium and perturbed fields are derived,
and expressions for plasma stability determined for local and
global displacements. Section 3 solves for the equilibrium
field in cylindrical geometry, and generates a mapping between
different equilibrium constraint representations. Next,
section 4 solves for the perturbed field in a cylindrical plasma,
and reduces the stability to an eigenvalue equation. The
eigenvalue problem is solved numerically for one and two
barrier systems. In particular, the stability of a two barrier
configuration with continuous rotational transform profile is
compared to the single interface configuration with rotational
transform jump. Finally, section 5 contains concluding
remarks.

2. Multiple interface plasma–vacuum–model

We generalize the analysis of Kaiser and Uecker [13] to an
arbitrary number N of Taylor-relaxed states, each separated by
an ideal MHD barrier. The system is enclosed by a vacuum,
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Figure 1. Schematic of magnetic geometry showing ideal MHD
barriers Ii , the conducting wall W , plasma regions Pi and the
vacuum V .

and encased in a perfectly conducting wall. For such a system,
the energy functional can be written

W =
N∑

i=1

Ui −
N∑

i=1

µiHi/2 −
N∑

i=1

νiMi, (5)

where µi and νi are Lagrange multipliers, and

Ui =
∫

Ri

dτ 3

(
Pi

γ − 1
+

B2
i

2µ0

)
, (6)

Mi =
∫

Ri

dτ 3P
1/γ

i , (7)

Hi =
∫

Ri

dτ 3A · ∇ × A +
∮

C<
p,i

dl · A
∮

C<
t,i

dl · A

−
∮

C>
p,i

dl · A
∮

C>
t,i

dl · A. (8)

The term Ui is the potential energy, Mi the plasma mass, and Hi

the magnetic helicity in each region Ri . In equations (6)–(8),
dτ 3 is a volume element, γ the ratio of specific heats, and
Pi, Bi and Ai the equilibrium pressure, magnetic field strength
and vector potential, respectively. The regions Ri comprise the
N plasma regions R1 = P1, . . . , RN = PN and the vacuum
region RN+1 = V . Each plasma region Pi is bounded by the
inner and outer ideal MHD interfaces Ii−1, and Ii , respectively,
whilst the vacuum is encased by the perfectly conducting wall
W . Finally, C>

p,i and C>
t,i , and C<

p,i and C<
t,i are circuits about

outer (>) and inner (<) boundaries of Ri in the poloidal and
toroidal directions, respectively. Figure 1 shows the geometry
of the system.

Setting the first variation to zero yields the following set
of equations:

Pi; ∇ × B = µiB, Pi = const, (9)

Ii; n · B = 0, [[Pi + 1/2B2]] = 0, (10)

V; ∇ × B = 0, ∇ · B = 0, (11)

W; n · B = 0, (12)

where n is a unit vector normal to the plasma interface Ii , and
[[x]] = xi+1 − xi denotes the change in quantity x across the
interface Ii . The boundary conditions on n · B arise because
each interface and the conducting wall is assumed to have
infinite conductivity. In turn, these imply the following flux
constraints during Taylor relaxation:

Pi; 
t
i = const, (13)

V; 
t
V = const, 


p

V = const, (14)

where the subscripts i, V are labels for quantities within
the ith plasma region, and vacuum region, respectively, and
the superscripts p, t label the poloidal and toroidal fluxes,
respectively. Given the vessel with boundary W , the interfaces
Ii , and the magnetic field B, equations (9)–(12) constitute a
boundary problem for the plasma pressure Pi in each region Ri .

The second variation is a straightforward generalization
of Spies [11, 12] to multiple interfaces. That is,

δ2W =
N∑
i

(
δ2WP,i + δ2WI,i

)
+ δ2WV , (15)

where

δ2WP,i =
∫

Pi

dτ 3
(|∇ × a|2 − µia∗ · ∇ × a + |pi |2/γPi

)
,

(16)

δ2WI,i =
∫

Ii

dσ 2|ξi |2[[Bn · ∇B]], (17)

δ2WV =
∫

V
dτ 3|∇ × a|2 (18)

and where, following Kaiser and Uecker [13], we have used
upper case symbols to denote equilibrium quantities, and lower
case represent perturbation. Hence, a is the perturbed vector
potential and pi the perturbation in the equilibrium pressure
Pi . Finally, ξi = ξi · n denotes the normal displacement of Ii .

In Spies [11] the condition δ2W > 0 was reformulated as
an eigenvalue problem which must be solved iteratively. That
is, the functional δ2W was minimized subject to the constraint
of constant NA, where

NA =
∫

P∪V
d3τ |∇ × a|2. (19)

To solve the problem the Lagrangian multiplier λ was
introduced, and the functional L = δ2W − λNA varied.
Solutions of δL = 0 with L = 0 are stable providing λ > 0.
In the variational formulation of Kaiser and Uecker, δ2W was
minimized with respect to a while keeping the displacement
ξ of the interface fixed. No normalization appears in this
problem, and stability was reduced to the positivity of δ2W .

For N � 1, we use a different and more convenient
normalization:

NB =
N∑
i

∫
Ii

d2σ |ξi |2, (20)

where we have recognized that the displacement of the wall
is zero, ξN+1 = 0. For Pi , V, W , solutions of δL = 0 can be
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written in terms of the perturbed magnetic field b = ∇ × a as
follows:

Pi; ∇ × b = µib, (21)

Ii; ξ ∗
i [[B · b]] + ξ ∗

i ξi[[B(n · ∇)B]] − λξ ∗
i ξi = 0, (22)

n · bi,i+1 = Bi,i+1 · ∇ξi + ξin · ∇ × (n × Bi,i+1), (23)

V; ∇ × b = 0, (24)

∇ · b = 0, (25)

W; n · b = 0. (26)

Equations (23) and (26) are boundary conditions, and do
not result from setting δL = 0. With a suitable Fourier
decomposition chosen, equation (23) solves for the unknown
coefficients of the perturbed field in each region. With
substitution, equation (22) then becomes a linear eigenvalue
equation. The set of equations is completed by expressions for
the perturbed fluxes through each region.

3. Cylindrical equilibria

In this section cylindrically symmetric equilibrium solutions
are generated. A cylindrical co-ordinate system is used
(r, θ, z), with equilibrium variations permitted only in the
radial direction. Following Kaiser and Uecker we normalize
the plasma–vacuum boundary to r = 1, and assume that the
cylinder is periodic in the z direction, with periodicity L. In
this system, solutions to equations (9)–(12) can be written in
vector notation B = {Br(r), Bθ (r), Bz(r)} as

P1 : B = {0, sgn(µ1)k1J1(|µ1|r), k1J0(|µ1|r)},

Pi : B = {0, sgn(µi) [kiJ1(|µi |r) + diY1(|µi |r)] , kiJ0(|µi |r)
+diY0(|µi |r)},

V : B = {0, BV
θ /r, BV

z }, (27)

where ki, di ∈ R, and J0, J1 and Y0, Y1 are Bessel functions
of the first kind of order 0, 1, and second kind of order 0,
1, respectively. The terms BV

θ and BV
z are constants. The

constant d1 is zero in the plasma core P1, because the Bessel
functions Y0(|µ1|r) and Y1(|µ1|r) have a simple pole at r = 0
[16]. The geometry of this system is analogous to the general
screw pinch [17], but with key differences. Notably, the
pressure gradient is zero, except at ideal MHD barriers, where
it is a delta function.

With an analytic form for the equilibrium magnetic field
available, the equilibrium problem can now be prescribed in
parameter space. Recognizing that the change in pressure can
be expressed in terms of the change in field strength B of the
barriers, we observe that the plasma equilibrium is completely
determined by the magnetic field profile and the radial position
of the barriers. That is, the equilibrium is constrained by the
4N + 1 parameters:

{k1, . . . , kN , d2, . . . , dN , µ1, . . . , µN, r1, . . . rN−1,

rw, BV
θ , BV

z }, (28)

where ri are the radial positions of the N ideal MHD barriers,
and rw the radial position of the conducting wall. Equivalently,

the equilibrium can be constrained by the rotational transform
and magnetic fluxes. That is, the 4N + 1 quantities

{
t
1, . . . , 


t
N , 


p

1 , . . . , 

p

N−1, 

t
V , 


p

V , �ιin1 , . . . , �ιinN,

�ιout
1 , . . . , �ιout

N }, (29)

where �ιini and �ιout
i are the rotational transform on the inside and

outside of each interface. In cylindrical geometry �ι expands as

�ιini = L

2πri

Bθ,i(ri)

Bz,i(ri)
, �ιout

i = L

2πri

Bθ,i+1(ri)

Bz,i+1(ri)
, (30)

whilst the toroidal and poloidal fluxes compute as follows:


t
i =

∫ ri

ri−1

Bz(r)rdθdr = 2π

µi

[kirJ1(rµi) + dirY1(rµi)]
ri

ri−1
,

(31)



p

i =
∫ ri

ri−1

Bθ(r)Ldr = −L

µi

[kiJ0(rµi) + diY0(rµi)]
ri

ri−1
.

(32)

In the vacuum region, the fluxes compute as


t
V = BV

z π(r2
w − 1), 


p

V = BV
θ L ln rw. (33)

Figure 2 shows an example with five ideal barriers, with
µ1 = 6.0, µ2 = 1.2, µ3 = 1.1, µ4 = 1.0, µ5 = 0.9 and
vacuum field BV

θ = 0.0605 T, BV
θ = 0.0676 T. The example

is chosen to have tokamak-like �ι profile (i.e. increasing safety
factor q). In the plasma core, q = rJ0(µ1r)/J1(µ1r), which
for all µ1 > 0 is a strictly decreasing function with increasing
radius. Elsewhere q may increase or decrease, depending upon
the values of di/ki and µi . In general, q can jump at the
interfaces, although the example shown here is chosen such
that �q = 0.

4. Stability in cylindrical plasmas

A solution proceeds by Fourier decomposition of the perturbed
field b and surface displacements ξi of each interface. That is,

b = b̃ei(mθ+κz), ξi = Xie
i(mθ+κz), (34)

where m, κ are the Fourier poloidal mode-number and axial
wavenumber, and b̃ and Xi are complex Fourier amplitudes.
Under these substitutions, and after solving for the field in each
plasma region, the system of equations (21)–(26) is reduced to
the eigenvalue equation,

η · X = λX (35)

with η is a N ×N matrix. The ith row of η is the ith interface
calculation of

([[B · b]] + ξi[[B(n · ∇)B]]) e−i(mθ+κz), (36)

which is the first two terms of equation (22), divided by X∗
i . In

equation (36), b and B take values either side of the interface.
In regions Ri and Ri+1, equation (23) solves for b̃r in terms of
equilibrium quantities and the complex amplitudes Xi, Xi−1

and Xi+1, Xi , respectively. As such, η is a tridiagonal matrix.
We have solved equation (35) for the set of N eigenvalues

λ1, . . . , λN , and eigenvectors X1, . . . , XN using a standard
numerical package. First, using Mathematica, Fortran 90
statements were generated to compute the coefficients of
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R [m]

Z
 [m
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–2
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0
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–2 –1 0 1 2
0

10

q

R [m]

0

1

2

3

p 
[k

P
a]

(a)

(b)

(c)

Figure 2. Example stepped pressure plasma profile solution in
cylindrical geometry. Panel (a) is a shaded contour plot of the
polodial flux, where the dashed line is the vacuum boundary and the
dotted lines the ideal barriers within the plasma. Panels (b) and (c)
show the pressure profile and safety factor profile, respectively.

the matrix η for all cases. For each matrix element ηij ,
the statements were coded into a case-selection algorithm.
To determine the eigenvalue, the QR algorithm for real
Hessenberg matrices was employed [18].

When evaluated for an eigenfunction, δL vanishes, and
so δ2W = λNB . The system is stable providing there do
not exist eigenfunctions with λ < 0. For each m and
magnetic configuration, we have computed the spectrum of
eigenvalues as a function of κ . Marginal stability thresholds
were investigated by sweeping κ over the range −K � κ � K ,
with K = 20 and �κ = 0.002, and detecting changes in sign
of any of the eigenvalues λ.

For N = 1, equation (35) reduces to an expression for the
eigenvalue λ. We have benchmarked our variational approach
to the results of Kaiser and Uecker [13], in which marginal
stability scans are available for a single interface plasma–
vacuum cylinder. Figure 3 is a plot of the m = 1 marginal
stability boundaries in µ1, δ space, with rl = 1.1, and for a
selection of pressure values. Kaiser and Uecker define δ to be
a measure of the increase in pitch angle of the field such that

Bθ,V = J1(µ1) cos δ + J0(µ1) sin δ, (37)

Bz,V = J0(µ1) cos δ − J1(µ1) sin δ. (38)

For consistency with our working, we map δ to the jump in �ι

��ι = L

2π

(
J0(µ1)/J1(µ1) − tan δ

1 + J0(µ1)/J1(µ1) tan δ
− J0(µ1)

J1(µ1)

)−1

. (39)

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

δ

µ 1

β = 0.1

β = 0.4

β = 0.5

β = 0.8

Figure 3. Marginal stability boundaries for m = 1 in µ1 − δ space,
and for different plasma β values. The parameter µ1 is the Lagrange
multiplier, and δ is a measure of the change in pitch across the
plasma–vacuum barrier. The plasma has rw = 1.1 and L = 1. The
stable region is interior to each locus. The cross-hairs (‘x’ and ‘+’)
denote the equilibrium configuration used for the dispersion curves
presented in figures 4 and 6, respectively.

Different internal pressures are described by β. We generalize
the definition of Kaiser and Uecker to multiple interfaces,

βi = 2µ0〈Pi〉
B2|r=1+

(40)

where 〈〉 denotes volume averaging. For a single interface,
β1 is related to k1 through k1 = √

1 − β. Comparison of
figure 3 to Kaiser and Uecker [13, figure 3] shows the stability
boundaries to be identical. As noted by Kaiser and Uecker,
δ > 0 for stability, and so the single plasma–vacuum interface
plasmas must have a nonzero jump in rotational transform at
the plasma/vacuum boundary for the plasma to be stable. In
the limit that β → 0, the marginal stability envelope is slightly
larger than for β = 0.1, and so the boundaries are set by
current-driven modes.

To develop confidence in the model, we next explore the
m = 1 stability of two interface (N = 2) equilibria, in a
configuration in which the position of the internal interface
is expected to only weakly perturb the eigenvalue of single
interface equilibria. Such a configuration is µ1 = µ2 = 2,
k1 = k2 = 0.9486, (β1 = β2 = 0.1), d1 = d2 = 0,
δ = 2, with separation between the interfaces, �r = r2 − r1,
approaching zero. In the limit that �r → 0 the change in
rotational transform is ��ι = 0.401. Figure 4 shows a set
of m = 1 dispersion curves for varying separation �r . The
feature at axial wavenumber κ = −2.57 corresponds to the
outer surface displacement vanishing. The most unstable mode
occurs at κ = 0.66, with λ1(N = 2) → ∞ and λ2(N = 2) →
2λ(N = 1) as the separation between the interfaces approaches
zero. For this κ , the stable eigenvalue λ1 has eigenvector X1 =
(1/

√
2, −1/

√
2) (surface displacements out-of-phase) and the

unstable eigenvalue λ2 has eigenvector X2 = (1/
√

2, 1/
√

2)

(surface displacements in-phase). Convergence of λ2 to the
eigenvalue in the single interface configuration benchmarks
our analysis in multi-interface configurations.
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 λ
0

λ(N
i
=1)

2λ
1
(N

i
=2), ∆r = 10–2

2λ
2
(N

i
=2), ∆r = 10–2

2λ
1
(N

i
=2), ∆r = 10–3

2λ
2
(N

i
=2), ∆r = 10–3

2λ
1
(N

i
=2), ∆r = 10–4

2λ
2
(N

i
=2), ∆r = 10–4

λ = 0

Figure 4. Dispersion curve (eigenvalue λ + λ0 versus axial
wavenumber κ) for N = 2 and m = 1, and for different separation
between interfaces �r = r2 − r1. Also shown is the dispersion
curve (λ + λ0 versus κ) for N = 1 (black). The plasma equilibrium
has µ1 = µ2 = δ = 2 (see cross hairs ‘x’ in figure 3). The offset
λ0 = min(λ) − 0.01 is used to permit the dispersion curve to be
plotted on a log-log scale. Marginal stability (λ = 0) is shown by
the dotted line.

The analysis of Kaiser and Uecker shows that stable
configurations only exist when the edge rotational transform
jumps at the plasma–vacuum boundary. To address the
question of the stability of these configurations in the
continuous rotational transform limit, we add an internal
interface and choose the Lagrange multiplier µi between
interfaces to deliver the required difference in �ι. Our aim is
to investigate whether barriers with different �ι either side of
the barrier are allowed without violating stability. We start by
defining the equilibrium by the nine parameters

{r1, rw, �ι0, �ιo1, �ιin2 , �ιout
2 , BV , β1, β2} (41)

and two constraints �ιin1 = �ιout
1 and �ιin2 = �ιout

2 . The rotational
transform at the internal interface (inner and outer sides), and
plasma–vacuum interface (inner and outer sides) expand as
follows:

�ι0 = Lµ1

4π
, (42)

�ιin1 = Lsgn(µ1)

2πr1

J1(|µ1|r1)

J0(|µ1|r1)
, (43)

�ιout
1 = Lsgn(µ1)

2πr1

J1(|µ2|r1) + d2/k2Y1(|µ2|r1)

J0(|µ2|r1) + d2/k2Y0(|µ2|r1)
, (44)

�ιin2 = Lsgn(µ2)

2πr2

J1(|µ2|r2) + d2/k2Y1(|µ2|r2)

J0(|µ2|r2) + d2/k2Y0(|µ2|r2)
, (45)

�ιout
2 = L

2πr2

BV
θ

BV
z

. (46)

Transformation to the representation of equation (28) is
afforded via the following five steps:

(i) solve equation (42) for µ1 and compute �ιin1 ;
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Figure 5. Geometry used for a scan across �r with no jump in
q = 1/�ι. The parameters used were rw = 1.1, µ1 = 2.0, δ = 1.0,
β1 = 0.1, β2 = 0.05, BV = 0.1 T.

(ii) simultaneously solve equations (44), (45) for µ2 and the
ratio d2/k2;

(iii) solve equation (46) and BV 2 = BV
θ

2
+ BV

z

2
for BV

θ , BV
z ;

(iv) using value of d2/k2, equation (40) expand [[p +
B2/(2µ0)]] = 0 on second interface, and solve for k2;

(v) expand [[p + B2/(2µ0)]] = 0 on internal interface, and
solve for k1.

We have chosen r2 = 1.0, rw = 1.1, µ1 = 2.0, δ =
1.0, BV = 0.1 T. Both zero and finite beta plasmas have been
studied. The internal interface has been placed at r1 = r2−�r .
Figure 5 illustrates the configuration studied.

Figure 6 is a dispersion curve for the configuration scan
for a zero beta plasma, β1 = β2 = 0. The two eigenvalues
λ1(N = 2), λ2(N = 2) have different qualitative behaviour
inside and outside the interval Iκ = {−2.5 < κ < 1.4}. Inside
Iκ the lower eigenvalue λ1(N = 2) approaches the single
interface eigenvalue λ(N = 1), but is grossly unstable outside
Iκ . Outside Iκ the upper eigenvalue λ2(N = 2) approaches
λ(N = 1), but inside Iκ , λ2(N = 2) � 1. In the limit of
vanishing interface separation, �r → 0, λ2(N = 2) → ∞.
Mode crossings are evident at the Iκ interval bounds κ = −2.5
and κ = 1.4.

Linearly, the λ1(N = 2) branch corresponds to current-
driven modes made unstable by the high shear required to
match different rotational transforms at either interface. As
the interface separation decreases, the Lagrange multiplier
increases to produce the required high shear. In the limit of zero
interface separation, the parallel current density J‖ = µ2/µ0B

in region P2 becomes infinite, and the parallel current I‖
flowing through the region P2,

I‖ = µ2L

µ0

((∫
r1

r2Bθdr

)2

+

(∫
r1

r2Bθ/�ιdr

)2
)

(47)

is nonzero. It is the presence of this third nonzero singular
current (in addition to the singular currents on I1 and I2) that
modifies the linear stability from equilibria with finite µ2, and
hence zero I‖.

Further insight into the behaviour of the two branches is
afforded by the surface displacements, shown in figure 7. The
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Figure 6. Dispersion curve (2λ versus κ) for N = 2 and m = 1, for
�r = 0.01. Also shown is the dispersion curve (λ versus κ) for
N = 1. The plasma has equilibrium parameters µ1 = µ2 = 2,
δ = 1, β1 = β2 = 0, with rw = 1.1. Figures (a) and (b) plot the
same dispersion relation on a different vertical scale.
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Figure 7. Surface displacements as a function of κ . Figures (a) and
(b) correspond to the solid and dashed dispersion curves in figure 6.

displacements X1 are out-of-phase and in-phase, outside and
inside Iκ , respectively. Conversely, the displacements X2 are
in-phase and out-of-phase, outside and inside Iκ . In the limit
of vanishing interface separation, out-of-phase displacements
will collide unless the amplitude also goes to zero.

Figure 7 also reveals mode crossings, corresponding to
zeros in one of the displacements in X1 or X2. At κ = −2.5
for instance, the eigenvalues λ1(N = 2) and λ2(N = 2) have
eigenvector X = (1, 0) and X = (0, 1), and so the outer and
inner interfaces have zero displacement, respectively.

A convergence test was also performed on the eigenvalues
in the limit of vanishing interface separation. Figure 8 plots
the eigenvalues at κ = −0.71 and κ = 0.97, corresponding to
maximum and minimum λ(N = 1) in Iκ . As �r approaches
zero, λ1(N = 2) converges to λ(N = 1) linearly in �r . The
configuration with the minimum �r studied in this work was
�r = 10−3 m, corresponding to µ2 = 1001.6.

Finally, the dispersion relation is qualitatively unchanged
for increasing β. As β increases, the eigenvalue decreases
everywhere.
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Figure 8. Convergence of eigenvalue as function of vanishing
interface separation �r at two axial wavenumber slices. Plasma
equilibrium conditions are the same as in figure 6.

5. Conclusions

We have formulated a variational model for multiple interface
stepped pressure profile plasma configurations. The working
extends previous treatments, which developed models for a
single interface plasma–vacuum system. The motivation for
the work is the rigorous development of a model capable of
generating 3D ideal MHD equilibria in arbitrary geometry.
The system comprises multiple Taylor-relaxed plasma regions,
each of which is separated by an ideal MHD barrier of zero
width. The system is enclosed by a vacuum region, and
encased by a perfectly conducting wall. As a first step, analytic
solutions were developed for the equilibrium and perturbed
fields of a multiple interface cylinder.

System stability was examined by reducing expressions
for the perturbed fields to an eigenvalue problem. For
a single interface, marginal stability thresholds reduce to
previous working. For plasmas with a second internal
interface, across which there is no jump in either rotational
transform, µi or pressure, system stability converges to the
single interface result in the limit of vanishing interface
separation. For two interface configurations with continuous
rotational transform profile, linear plasma stability is modified
from the single interface case with a jump in rotational
transform. In the continuous rotational transform profile
case, the dispersion curve exhibits eigenvalue mode crossings,
corresponding to zeros of the interface displacements. One
eigenvalue, corresponding to in-phase surface displacements,
approaches the eigenvalue of the single interface configuration
with rotational transform jump in the limit of vanishing
interface separation. The second eigenvalue, corresponding
to out-of-phase surface displacements becomes very unstable.
Instability occurs due to the very high shear necessary to
match the rotational transform at the interfaces. In the
limit of vanishing interface separation the parallel current
density between the interfaces becomes infinite, and the
parallel current flowing through the region finite. It is the
presence of this third nonzero singular current (in addition
to the singular currents on the interfaces) that modifies linear
stability from that of similar equilibria with nonzero rotational
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transform jumps. In the limit of vanishing interface width,
linearly unstable out-of-phase displacements collide. We
postulate, and will explore in ongoing work, that these out-of-
phase displacements are nonlinearly stable. That is, surface
displacements vanish with vanishing interface separation.

We have postulated a plasma system with multiple barriers
at which the pressure changes and the magnetic shear can
reverse or experience a step change. A two barrier plasma,
with one barrier internal to the plasma and the other barrier
separating plasma and vacuum regions may offer a simple
model for internal transport barriers. In future work we will
study the stability of such configurations, thereby exploring
the energetics of internal transport barrier formation from a
variational perspective. We shall also relate the variational
approach employed here to an approach generalizing Taylor-
relaxed equilibria by augmenting the helicity constraint with
other ideal MHD constraints, in the spirit of Bhattacharjee and
Dewar [19].
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